¿Qué es el “machine learning”? Ejemplos en el sector FinTech
En estos tiempos de innovación tecnológica, aparecen nuevos términos que enseguida circulan en boca de todos. Uno de los más usados es el machine learning y en este post te vamos a explicar su significado y algunas de las aplicaciones más interesantes que tiene en el sector fintech.
Pues bien, el machine learning -también conocido como aprendizaje automático- se trata de una disciplina científica que pertenece al ámbito de la inteligencia artificial. A grandes rasgos, está basado en la creación de sistemas que aprenden automáticamente y que son capaces de identificar patrones complejos entre millones de datos.
Así, el machine learning es fundamental para ser competitivo en una economía cada vez más datificada y digitalizada, identificar las necesidades de cada segmento de usuarios y automatizar numerosos procesos financieros y tecnológicos. Sus principales ventajas son el ahorro de costes, la optimización de procesos, la aplicabilidad directa en numerosas áreas, y la mejora autónoma que estos sistemas adquieren con el tiempo, sin intervención humana.
Ahora, veamos algunos ejemplos de las utilidades que el machine learning tiene para el sector fintech.
Aplicaciones del machine learning en el sector fintech
-
- Análisis predictivo para determinar en base a grandes volúmenes de datos el volumen o porcentaje de préstamos no pagados y construir modelos de crédito efectivos: Algunos ejemplos de compañías que emplean el aprendizaje automático son Lending Club, la plataforma de pago automatizada Kabbage en Atlanta o LendUp, entre muchas otras.
- Toma de decisiones:El aprendizaje automático ayuda a las startups fintech a mejorar y optimizar aspectos para tomar mejores decisiones gracias al procesamiento inteligente del Big Data y la búsqueda de patrones comunes. Algunas compañías que se sirven de ello para crear datos crediticios y analizar los datos mejorando sus decisiones son Affirm. ZestFinance o BillGuard.
- Seleccionar contenido financiero relevante: Los algoritmos de machine learning son capaces de extraer valioso contenido web a tiempo a real entre motores de búsqueda, bases de datos, medios sociales, etc.-. Podemos citar empresas fintech líderes en este campo como Dataminr o el motor de búsqueda financiero AlphaSense.
- Detección de fraudes: Este es uno de os aspectos que ha mejorado notablemente el machine learning. Según IBM, los fraudes le salen caros a la industria financiera, datados en 80.000 millones anuales. Ahora, con la ayuda inestimable del aprendizaje automático, las técnicas para detectar fraudes se han hecho más sofisticadas y efectivas, valiéndose de datos masivos de transacciones para elaborar un modelo que detecte patrones fraudulentos.
- Además, el machine learning también se utiliza para las soluciones de autenticación segura como las biométricas, que ya emplean empresas fintech como Feedzai, Bionym, Eye Verify -un sofware de “huellas oculares”-, o BioCatch, empleada por numerosos bancos para proteger a sus clientes del malware o los ataques remotos RAT. Así, las soluciones biométricas pueden asociarse al reconocimiento facial, de voz o de objetos, así como de iris, o de huellas dactilares, entre otros.
- Aumento de la productividad: Gracias al machine learning, las fintech pueden ser más productivas, analizar con mayor eficiencia y rapidez el mercado de valores, identificar clientes potenciales o evaluar patrones comunes a su actividad de consumo y contratación de productos financieros, además de adaptar mejor la oferta a las exigencias de cada parcela de usuarios. También es útil para los departamentos de recursos humanos, ya que los algoritmos permiten realizar análisis exhaustivos sobre su rendimiento y rentabilidad, pudiendo de esta manera potenciar sus capacidades e incentivar su productividad.
Préstamo Online
Artículos relacionados
-
Divorcio de mutuo acuerdo en España, ¿Por dónde empezar?2 Dic 2024 • 5 min de lectura
-
Alquilar una caja de seguridad en un banco. Qué necesitas para hacerlo29 Nov 2024 • 5 min de lectura
-
Criptomonedas · Guía básica para principiantes29 Nov 2024 • 8 min de lectura
-
Cómo conseguir el certificado de eficiencia energética en hogares y edificios29 Nov 2024 • 7 min de lectura